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Recent quantum dynamical calculations [Hauschildt, J.; eélaém. Phys. Letl999 300 569] have shown

that HOCI— OH + CI dissociation on the ground-state potential energy surface, andl #o10, occurs
predominantly via isolated compound-state resonances, whose rates are highly mode-specific. In this work,
these resonance rates are averaged to calculate the-H@E + Cl unimolecular rate constant as a function

of temperature and pressure. The result is compared with the standard pressure and temperature dependent
RRKM unimolecular rate constant. It is found that the state-specificity makes the pressure-dependent rates
significantly lower than the RRKM rates in the intermediate pressure regime.

I. Introduction the energy intervaE — E + AE, k(w,E) is pressure dependent

i 15
At the microscopic, elementary level, unimolecular dissocia- and may be written 4%

tion™2 may be described in terms of isolatetlor overlappin§12

resonance states, each with a specific unimolecular rate constant k(@,B) = No/{ le kT o)} —o (4)
kn. The resonance line widffi, and lifetimer, are related tdx, . ) o
by with the high and low-pressure limits of

k,=T/h=1/, (1) k(oo E) = (K] (%)
The resonance states are said to be isolated if the widths of k(O,E) = O/, I* (6)

their lines are small compared with the distances between them;

that is,I'y << 1/p(E), wherep(E) is the density of states for the  Resonance states with small rate constants contribute more to
energized molecule. As the line widths broaden and/or the k(w,E) as the pressure is lowered, so thét,E) decreases with
number of resonance states in an energy interval increases, thglecrease in pressure.

spectrum of the molecule may no longer be quasidiscrete, The monoenergetic unimolecular rate constap{w,E) in
because the resonance lines may ovettap. the Lindemann-Hinshelwood mechanism for thermal uni-

Following the pioneering work of Rabinovitch and Setser, mpolecular decomposition is related to the abkie,E) by®15-17
the collision-averaged unimolecular dissociation of a mono-

energetically excited molecule in a chemical activation or wk(w,E)
photoactivation experiment may be interpreted by the mecha- Kuni(@,E) = (7)
nismh k(w,E) + w

KoE) If eq 4 is used fok(w,E), eq 7 becomes

A*

decomposition products (D)

w
- stabilized reactants (S) 2) k,n(@,E) = —z (8)
Nk, + o
wherew is the collision frequency and the unimolecular rate
constant is given by where the summation is over tiNy resonance states with®
— E + AE. The high- and low-pressure limits &fni(w,E) are

kw,E) = wD/S ®) [k,Candw, respectively. By summing over all of the resonance
According to RRKM theory;? the dissociation of monoener- states, vyith the appropriate Bolt;mann wei.ghting, the folloyving
getically excited molecules is random with exponential decay, €xPression for the thermal LindemanRinshelwood uni-
so thatk(w,E) equals the RRKM rate constak(E). However, molecular rate constant is obtained:
if the dissociation occurs vidl, isolated resonance states in w K expE /k;T)
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whereQ is the partition function for the reactant molecule’s

internal degrees of freedom. If the enefiggan be assumed to 10"
be continuoud®8one obtaingni(w,T) by Boltzmann weighting

the kuni(w,E) given by eq 7; i.e.

K@, E)o(E) exp(ElkgT)

10"

w
kuni(@.T) =5 yA @B+ dE  (10) o
x 10

This expression is a further extension of the standard thermal 7 T eespeaic raesi] |
Lindemann-Hinselwood unimolecular rate constarfgr it S L° SACM ’
incorporates the standard RRKM model in whikty,E) equals 10° f:'\‘;:ST beos i
the RRKM rate constank(E) as well as eq 4, the isolated o :—;-:mgi b-08 1
resonance model fd(w,E). In the low-pressure limit, both the - . , , — ,
RRKM and isolated resonance models give the same expression 0 2 4 6 8 10
for kyn(w,T); i.e., it is proportional taw and the Boltzmann- E (kcal/mol)

weighted density of states of reacting molecules. In addition, if Figure 1. Unimolecular rate constants3 for HOCl — OH + ClI

the averagék,Jof the resonance rate constants in the energy dissociation: o, quantum dynamical, state-specific rate constants of
intervalE — E + AE equals the RRKM rate constak(E), the Hauschildt et al®? (—_x—), average of the_ sta_te-specific_rates_ with 0.5
RRKM and isolated resonance models also give the same ratekcal/mol energy width; ('21’ SACM vibrationally .ad'la\tﬁt's‘} rate
constant in the high-pressure limit. Thug, for t_his case, the ggﬂ::gmz’vatm ): (()_5’)0%? ar(1_d 1.)06;{1? :g'scgggg:;;“(:saee text).rate
Kuni(w,T) of the two models may only differ in the intermediate

pressure regime. 22
In previous worki® the above equations were used to calculate

thermal rate constants for 2 %
HO,—H+ 0O, (12) .

dissociation. Quantum dynamical calculations show thap HO m ‘

dissociates via resonance states whose wave functions have ~¢ 16’

random characteristics and appear to be unassigffabtelhus, -

though the resonance rates are state-specific, they are not mode- 14

specificé Furthermore, the calculated rate constZhéppear

to be statistical state-specific and in accord with the Porter- 1.2

ThomasPg(K) distribution2526 This Pg(k) distribution for HGQ

— H + O, was incorporated into the above isolated reso- 1 P . .

nance model to see how statistical fluctuations in the state- % 80 3 40 45 50 55

E (kcal/mol)

specific rate constants affect the collision-averakfeslE) and
Lindemann-Hinshelwood thermakyni(w,T) rate constants for Figure 2. Comparison between the anharmonic correction to the HOCI
HO, dissociation'® The difference between the twni(w,T) density of states, i.efan{(E) = panE)/pna(E), and the fit by eq 13.
curves increases with decrease in temperature and was found’agg(E) is determined from the quantum calculations of Hauschildt et
to be as large as 30% at 100 K. al:
In recent work, the state-specific unimolecular dissociation

reaction effect of mode specificity on the thermal unimolecular dissocia-

tion of HOCI.
HOCI— OH + CI (12)
II. HOCI Anharmonic Density of States
has been the focus of numerous experiméht#and theoretical

studies’’~53 The quantum dynamical calculations of Hauschildt
et al.>2for the ground-state potential energy surface, determined
the state-specific rate constants Jo= 0 and energies up to 10
kcal/mol above the unimolecular threshold. Three quantum
numbers may be assigned to many of the resonance states. Thu
this unimolecular dissociation is highly mode-specific, and as
shown in Figure 1, at low energies, the resonance states hav
rate constants which vary by more than 7 orders of magnitude.
The resonance states with a large amount of quanta in @ H . o . .
stretch mode are particularly long-livéé52 In the work harmomc densities, i.€.pan(E) and_ ph?’(E)'. The latter 'S
presented here, the state-specific quantum dynamical calcula-qeterm'rleg Gf(;;rg thelHOCI_h%rE%mc \fbragonal irel%%%ngles,
tions of Hauschildt et &2 are incorporated into the above "e'L’l/%g'_ £ CM*, vocy = 724.6 M, aNAVbeng = 1230
isolated resonance model for unimolecular dissociation to S™ - A plot of thisfan{[E) correction factor is given in Figure
calculate the pressure-dependent thermal rate constants for HocH
— OH + CI dissociation. The resultingyni(w,T) curves are
compared with those of RRKM theory and a microcanonica
variational transition state theory moefeP® for unimolecular
bond rupture. These calculations only include statesl ferO _ db

. 1 fart(E) = expcoE")[l + (13)

and, thus, should be viewed as a model study to investigate the S

To calculate théqni(w,T) rate constant for HOCI dissociation,
an accurate density of states is required for the unimolecular
reactant HOCI. From their quantum dynamical calculations,
Hauschildt et al. determined the HOCI anharmonic density of
States up to the zero-point corrected unimolecular dissociation
threshold of 55.32 kcal/m&k These densities of states are in
e;axcellent agreement with those deduced from experifigk.
anharmonic correction factdg.{E) to the HOCI density of
states may be determined by comparing the anharmonic and

To have a continuous expression fighif E), the points in
| Figure 2 were fit to the following model equati6h:
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Figure 3. Comparison betweepan(E)AE, AE = 0.5 kcal/mol, and Figure 4. H—O- - -Cl bend frequency as a function of the O- - -Cl
the number of resonance states in thi energy interval paniE) is distance. €), 1 — O transition frequency from the vibrationally

the fit from eq 13, and the latter is obtained by counting the number of adiabatic potential energy curves;(-), (- - -), and (-— -) are the curves
states in Figure 1E is the energy in excess of the unimolecular from eq 15 withb = 0.5, 0.8, and 1.0 AL, respectively.
threshold.

from the HOCI— OH + CI potential energy surface used in
wheres = 3 is the number of vibrational degrees of freedom. the quantum dynamical calculation. As discussed in the previous

The fitted values ard = 3.72 x 107° andd = 2.30. Here, section, some of the broad resonances, with large rate constants,
parameterd is unitless, and has a unit of (kcal/mof)d. As may not be included in Figure 1. Including these rates would
shown in Figure 2, the fit to the points is quite good. The increase the quantum average. On the other hand, the fact that
extension of the anharmonic density of states, pgWE) = the SACM rate is larger than the average of the state-specific

fan{E)pnal E), to energies above the unimolecular threshold is rates is not unexpected, because the statistical hypothesis is not
shown in Figure 3. Herean{ E)AE, with AE = 0.5 kcal/mol, fulfilled for HOCI dissociation.
is compared with the actual number of resonance states in the A variational RRKM modef? similar to that used previ-
AE energy intervab? The latter was obtained by counting the ously?4~56 was developed for HOC OH + ClI dissociation.
number of states in Figure 1 withiRE. It should be noted that  The model assumes that the OH stretch frequency remains
Troe®® has proposed an empirical formula for the anharmonic constant at 3602 cm as the G-Cl bond ruptures. The reaction
density of states, which gives excellent fits to the experimental coordinate potential is modeled by the Morse function
pantE) for HOCPF” and NQ.5°

Overall, the anharmonic-corrected density of states above the V() =DJ1 — e P2 — p, (14)
unimolecular threshold is in good agreement with the quantum
dynamical number of resonance states. The difference observedyhere D, is the classical ©Cl bond dissociation energy.
is that the number of resonance states identified in the quantumThe values for the parameters in eq 14 Bxe= 58.30 kcal/
calculations falls somewhat below the number predicted by mol, ro = 1.689 A, and8. = 2.09 A-L. The attenuation of the
extending the anharmonic bound-state density above thresholdH—0- - -Cl bending frequency, as the<@| bond ruptures, is
This is the direction in which one would expect any difference represented by
to occur, because it may be difficult to identify all of the broad,
short-lived resonances in the quantum dynamical calculation v(r) = veexp[—b(r —rp)] (15)
and some of them may not be included in Figure 1. At the same
time, the upper limit of the calculated rates in Figure 1 is well whereve = 1238 cn1?! is the bend frequency at the HOCI
defined. It corresponds to the inverse time of a ballistic particle potential energy minimum. Thb term in eq 15 is the only
with energy E to move across the interaction zone of the adjustable parameter in this variational RRKM model for HOCI
potential energy surfacd.Thus, the small discrepancy between dissociation.
the quantum results and the model predictions in Figure 3 may The microcanonical variational RRKM rate constants were
also be attributed to the limitations of the anharmonic density calculated using the expression
extrapolations.

N'(E)

. . k(E) = (16)
[1l. Microcanonical Rate Constants and RRKM Model ho(E)
A RRKM model is needed to calculateka,(w,T) curve to where N¥(E) is the minimum in the sum of states along the

compare with that determined from the state-specific uni- O—CIl dissociation reaction path angE) is the HOCI anhar-
molecular rates. However, before presenting this model, it is monic density of states, as described above. RRE®) curves,
useful to compare the HOCt OH + CI k(E) curve determined determined with thé parameter in eq 15 set to 0.5, 0.8, and
previously? from the statistical adiabatic channel model 1.0 A-%, are shown in Figure 1. The SACM curve is in good
(SACM)®! with the curve of the average state-specific rates. agreement with thé = 0.8 A~ curve at low energies and the
Both of these curves are shown in Figure 1 and, except for theb = 1.0 A~1 curve at intermediate and high energies. Bhe
lowest energies, the average state-specific rates are significantly0.5 A~ curve is in good agreement with the averages of the
lower than the SACM rates. These average rates are determinedtate-specific rates. The curves of the-8- - -Cl bending

for an energy interval of 0.5 kcal/mol, and the SACM rates are frequency versus the HO- - -Cl distancer, for b = 0.5, 0.8,
determined from the vibrationally adiabatic curves derffded and 1.0 A1, are given in Figure 4. Also shown is the plot of
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Figure 5. Plots ofkui(w,T) for the isolated resonance state-specific Figure 6. Same as Figure 5, except= 0.5 A%,
model (), eq 9, and the variational RRKM model (- - -), eq 10, with

bend attenuation parameter= 1.0 A, pressure, the twdin(w,T) curves are nearly identical, as

N expected, because in the low pressure limit the rate constant is
the 1 -— O transition frequency for the HO---Cl bend,  proportional to the Boltzmann weighted density of reacting
determined from the vibrationally adiabatic potential energy states, which is nearly the same for the two models.
curves f20r the HOCl OH + CI analytic potential energy B. Variational RRKM Model with b= 0.5 AL A RRKM
surface” model is often constructed to fit the experimental high-pressure

kuni(w,T) rate constant, and this model is then used to calculate

IV. Lindemann —Hinshelwood Thermal Unimolecular the completekuni(w,T) versusw curve for comparison with
Rate Constantkyni(w,T) experiment. As shown in Figure 1, the decomposition of HOCI

is state-specific, and theni(w, T) curve calculated with the state-

Both the isolated resonance, eq 9, and RRKM, eq 10, modelsspecific model should represent the experimekako, T) curve.
are used to calculaleni(w,T). To evaluate eq 9, the resonance An approach akin to fitting the experiment is to choose a RRKM
ratesk, and energie&, are taken from Figure 1 and the partition ~model which fits the state-specific high-presskiigw,T) rates.
function Q is calculated from the anharmonic energy levels The variational RRKM model witlh = 0.5 A~ is expected to
calculated by Hauschildt et &.for HOCI. Equation 10 is give an approximate fit to the state-specific high-pressure
evaluated by using the variational RRKIE) discussed inthe  kuni(w,T), because this RRKM model givé¢E) rate constants
previous section fok(w,E), the anharmonic density of states in approximate agreement with the averages of the state-specific
panE) for p(E), and the sam® as above. It is noteworthy that  rates (e.g., see Figure 1).

the harmonic approximation is excellent for evaluatiQg The kuni(w,T) curves calculated with thd = 0.5 A1
because the harmonic and anharmdidiffer by less than 1%  variational RRKM model are compared with the state-specific
at 1000 K. kuni(w,T) curves in Figure 6. The two sets of high-pressure rate
A. Variational RRKM Model with b = 1.0 A-1. Figure 5 constants are in approximate agreement. However, at intermedi-
gives a comparison of the state-speckHigi(w,T) curve with ate pressures, the state-specific curve is significantly lower than

that calculated for the variational RRKM model with= 1.0 the RRKM one. FoiT = 1000 K, where the two sets of curves

A-1. As shown in Figure 1, this variational RRKM model gives are nearly the same at high-pressure, the state-specific curve is

a good representation of the SACME) curve, which is as much as a factor of 2.0 lower at intermediate pressures. If

calculated from the vibrationally adiabatic potential energy the curves for 300 and 500 K are shifted so that they agree at

curves for the analytic potential energy surface used to determinehigh-pressures, a similar lowering of the state-spekifi¢w, T)

the resonance rates and energies. Thus, Figure 5 also representsirve is found for these temperatures. Thus, the effect of the

a comparison of thé&yni(w,T) curve of the SACM model with orders-of-magnitude differences in the state-specific rates shown

that for the actual quantum dynamics, with both curves basedin Figure 1 is to give a state-specifig,i(w,T) curve which is

on the same potential energy surface. a factor of 2.0 lower than the standard RRKM one at intermedi-
As shown in Figure 5, the state-specikigi(w,T) is a factor ate pressure. This is a significant effect and should be observable

of 2.0—2.4 smaller than the RRKM value at the high-pressure when fitting the experimentad,.(w,T) curve for HOClI— OH

limit. This is because the high-pressure limiting rate is a + CI dissociation. In the Appendix, it is shown that, if the

Boltzmann weighting of the energy and state-dependent rateRRKM rate constantk(E) equals (k.,[) the average of the

constants and, as shown in Figure 1, the RRK(&) for b = state-specific rates for the energy inter&ato E + AE, the

1.0 A-! and the SACMK(E) are significantly larger than the ~ RRKM kuni(w,T) will always be larger than the state-specific

energy-dependent average of the state-specific rates. At lowkyni(w,T).
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V. Discussion the effect of total angular momentum on the thermal uni-

) ] ~molecular rate constant for HOCI dissociation.
The calculations reported here and those of previous studies

provide detailed information concerning the relationship between  Acknowledgment. This research was supported by the

state specific and thermal unimolecular rate constants fod the National Science Foundation. The authors wish to acknowledge

= 0 dissociation reaction HOCt OH + CI. The findings of  important discussions with dgen Troe. The research of Don

these studies are reviewed in the following. Setser and that of Don Setser and Seymour Rabinovitch has
Vibrationally adiabatic potential energy curves have been taught the authors very much about unimolecular dynamics and

calculated for the potential energy surface used in the quantumkinetics and has provided a foundation for much of their

dynamical calculation of the state-specific rate constants for research. The authors are honored to have the opportunity to

HOCI dissociatior?? and microcanonical statistical adiabatic contribute to this special issue.

channel model (SACM) unimolecular rate constants have been

calculated from these curves. High-pressure thermal uni- Appendix

molecular rate constarkg.(w,T), determined from these SACM It can be shown that the state-speciigi(w,E) in eq 8 is

k(E) rate constants, are a factor of 2 or more higher than gmaller than the RRKM-typkn(w,E) given by
kuni(w, T) determined from the state-specific rates. However, it

is difficult to identify all of the broad resonances with large wlk, ]
rate constants in the quantum dynamical calculations and, if kpi(w.E) = —— (A1)
some of these resonances are not included in Figure 1, the actual &t o

state-specifick,ni(w,T) will be larger and may be in better ) N

agreement with the SACMni(w,T). It is of interest that the ~ When[k:[is the average of the state-specific rate constints
SACM k(E) may be fit by a simple variational RRKM  Thus, if (k\Cequals the RRKM rate constak(E), which may
model54-56 for which the HO- - -Cl bend frequency is attenuated Pe the case for many unimolecular dissociati®t®the RRKM

exponentially as the O- - -CI bond ruptures. This attenuated bendkuni(@,E) is larger than the state-specific value.

frequency is similar to the + 0 transition frequency for the The problem is to prove that

bend determined from the vibrationally adiabatic potential

energy curves. (KO . 1N Kk
In contrast to the high-pressure rate constants, in the low- kHo N&Eak+o (A2)

pressure limit, the state-specific, RRKM, and SAGMi(w,T)

agree, because in this limit the rate constant is proportional to 1 N w 1N o

the collision frequency and the Boltzmann weighted density of 1 — > — - =1—-— (A3)

reacting states, which is nearly the same for the three models. KHw NE ( k +ow N &k + o

A variational RRKM model may be chosen to fit the state-

specific value okyni(w,T) in the high-pressure limit. However,  and, thus

at intermediate pressures, this model gives valueg fgw,T)

which are as much as a factor of 2 larger than the state-specific 1 1N 1

values. <— (A4)
A unimolecular model with nonexponential decay, at each BH o N&k+o

energy, is required to fit the state-speciigi(w,T). A RRKM

model with reduced dimensionality (i.e., a model with only a 'f One setsx = ki + o, the problem reduces to

fraction of the reaction phase space coupled to the dissociation N

coordinatef? but one that retains exponential decay, cannot be i - 1 E (A5)

adjusted to fit the state-specifigni(w,T) curve. The quantum O NZ& X,

dynamics for HOC OH + CI dissociation suggests that the

e e O eacant cnsits of chaolc, SUAsi s ssighioniard o show that eq AS i e B¥=2, for
’ ' A hich XO= (x; + x2)/2. ForN = 2, eq A5 becomes

the model HCC— H + C=C reaction'36:6’Such a phase space wh ba+x) g

structure will give rise to nonexponential classical unimolecular 5 1(1 1) X, + X,

X X 2

dissociation for a microcanonical ensemble of HOCI initial = X (AB)
states. It is of interest to investigate the classical phase space 2%,

structure and classical unimolecular dynamics of HOCI. A study

of the phase space structure for a two-dimensional model of If both sides of eq A6 are multiplied bya(x; + x2), one has
HOCI has been completéd. (X1 + X2)? = 4x1%. This can be rearranged t& (— X2)? = 0,

Finally, it should be emphasized that the state-specific rate Which is true for all positives's.

constants used in the calculationskgf(w, T) reported here are o Suppos;a} eqA5is trrl:e fon = n'l as I.S(gjownfabove fdgl =2
for total angular momentud= 0. The reactant density of states ne can then prove the general validity of eq A5, by proving

will increase by including resonance states with 0, but this itis also valid forN = n+ 1. ForN=n+ 1, eq A5 becomes
will not necessarily alter the difference found here between the

X X

RRKM and state-specifik,ni(w,T) curves ford = 0. However, (n+1) < 1 { : E + i (A7)
if there is significantly more coupling and less mode-specificity n T n+ 1\_ X X

for the resonance states with> 0, this may result in less in + X141

fluctuations in the state-specific resonance rates and, as a result, =

better agreement between the RRKM and state-spégifi®,T)
curves?® In future work, it will be of much interest to investigate  which after expanding, may be written as
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n n 1 1 n n
XY=t %+ Xy x+1=n+1)7 (A8)

1= =1X Xnr1i=1 1=

Because it is assumed that eq A5 holds o= n, the first

term is greater than or equal t8. Hence, eq A8 becomes

1 n n
)Xt X ) -=2n
Xyl 1= =1%
X X
Z —+—|=2n (A9)
EI\ X1 X
Using the fact thatX — xn+1)? = 0, one can show
2 2
- <+
AT B e I (A10)

Xorn % XXpi1

If eq A10 is summed overr= 1 to n, one has proven that eq
A5 holds for allN. Thus,kyni(w,E) determined from eq Al is
larger than that found from eq 8.
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