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Recent quantum dynamical calculations [Hauschildt, J.; et al.Chem. Phys. Lett.1999, 300, 569] have shown
that HOCl f OH + Cl dissociation on the ground-state potential energy surface, and forJ ) 0, occurs
predominantly via isolated compound-state resonances, whose rates are highly mode-specific. In this work,
these resonance rates are averaged to calculate the HOClf OH + Cl unimolecular rate constant as a function
of temperature and pressure. The result is compared with the standard pressure and temperature dependent
RRKM unimolecular rate constant. It is found that the state-specificity makes the pressure-dependent rates
significantly lower than the RRKM rates in the intermediate pressure regime.

I. Introduction

At the microscopic, elementary level, unimolecular dissocia-
tion1,2 may be described in terms of isolated3-8 or overlapping9-12

resonance states, each with a specific unimolecular rate constant
kn. The resonance line widthΓn and lifetimeτn are related tokn

by

The resonance states are said to be isolated if the widths of
their lines are small compared with the distances between them;
that is,Γn , 1/F(E), whereF(E) is the density of states for the
energized molecule. As the line widths broaden and/or the
number of resonance states in an energy interval increases, the
spectrum of the molecule may no longer be quasidiscrete,
because the resonance lines may overlap.9-12

Following the pioneering work of Rabinovitch and Setser,1

the collision-averaged unimolecular dissociation of a mono-
energetically excited molecule in a chemical activation or
photoactivation experiment may be interpreted by the mecha-
nism1

whereω is the collision frequency and the unimolecular rate
constant is given by1

According to RRKM theory,1,2 the dissociation of monoener-
getically excited molecules is random with exponential decay,
so thatk(ω,E) equals the RRKM rate constantk(E). However,
if the dissociation occurs viaNo isolated resonance states in

the energy intervalE f E + ∆E, k(ω,E) is pressure dependent
and may be written as13-15

with the high and low-pressure limits of

Resonance states with small rate constants contribute more to
k(ω,E) as the pressure is lowered, so thatk(ω,E) decreases with
decrease in pressure.

The monoenergetic unimolecular rate constantkuni(ω,E) in
the Lindemann-Hinshelwood mechanism for thermal uni-
molecular decomposition is related to the abovek(ω,E) by6,15-17

If eq 4 is used fork(ω,E), eq 7 becomes

where the summation is over theN0 resonance states withinE
f E + ∆E. The high- and low-pressure limits ofkuni(ω,E) are
〈kn〉 andω, respectively. By summing over all of the resonance
states, with the appropriate Boltzmann weighting, the following
expression for the thermal Lindemann-Hinshelwood uni-
molecular rate constant is obtained:
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whereQ is the partition function for the reactant molecule’s
internal degrees of freedom. If the energyE can be assumed to
be continuous,15,18one obtainskuni(ω,T) by Boltzmann weighting
the kuni(ω,E) given by eq 7; i.e.

This expression is a further extension of the standard thermal
Lindemann-Hinselwood unimolecular rate constant,2 for it
incorporates the standard RRKM model in whichk(ω,E) equals
the RRKM rate constantk(E) as well as eq 4, the isolated
resonance model fork(ω,E). In the low-pressure limit, both the
RRKM and isolated resonance models give the same expression
for kuni(ω,T); i.e., it is proportional toω and the Boltzmann-
weighted density of states of reacting molecules. In addition, if
the average〈kn〉 of the resonance rate constants in the energy
intervalE f E + ∆E equals the RRKM rate constantk(E), the
RRKM and isolated resonance models also give the same rate
constant in the high-pressure limit. Thus, for this case, the
kuni(ω,T) of the two models may only differ in the intermediate
pressure regime.

In previous work,19 the above equations were used to calculate
thermal rate constants for

dissociation. Quantum dynamical calculations show that HO2

dissociates via resonance states whose wave functions have
random characteristics and appear to be unassignable.20-24 Thus,
though the resonance rates are state-specific, they are not mode-
specific.6 Furthermore, the calculated rate constants22 appear
to be statistical state-specific and in accord with the Porter-
ThomasPE(k) distribution.25,26This PE(k) distribution for HO2

f H + O2 was incorporated into the above isolated reso-
nance model to see how statistical fluctuations in the state-
specific rate constants affect the collision-averagedk(ω,E) and
Lindemann-Hinshelwood thermalkuni(ω,T) rate constants for
HO2 dissociation.19 The difference between the twokuni(ω,T)
curves increases with decrease in temperature and was found
to be as large as 30% at 100 K.

In recent work, the state-specific unimolecular dissociation
reaction

has been the focus of numerous experimental27-36 and theoretical
studies.37-53 The quantum dynamical calculations of Hauschildt
et al.,52 for the ground-state potential energy surface, determined
the state-specific rate constants forJ ) 0 and energies up to 10
kcal/mol above the unimolecular threshold. Three quantum
numbers may be assigned to many of the resonance states. Thus,
this unimolecular dissociation is highly mode-specific, and as
shown in Figure 1, at low energies, the resonance states have
rate constants which vary by more than 7 orders of magnitude.
The resonance states with a large amount of quanta in the H-O
stretch mode are particularly long-lived.50-52 In the work
presented here, the state-specific quantum dynamical calcula-
tions of Hauschildt et al.52 are incorporated into the above
isolated resonance model for unimolecular dissociation to
calculate the pressure-dependent thermal rate constants for HOCl
f OH + Cl dissociation. The resultingkuni(ω,T) curves are
compared with those of RRKM theory and a microcanonical
variational transition state theory model54-56 for unimolecular
bond rupture. These calculations only include states forJ ) 0
and, thus, should be viewed as a model study to investigate the

effect of mode specificity on the thermal unimolecular dissocia-
tion of HOCl.

II. HOCl Anharmonic Density of States

To calculate thekuni(ω,T) rate constant for HOCl dissociation,
an accurate density of states is required for the unimolecular
reactant HOCl. From their quantum dynamical calculations,
Hauschildt et al. determined the HOCl anharmonic density of
states up to the zero-point corrected unimolecular dissociation
threshold of 55.32 kcal/mol.52 These densities of states are in
excellent agreement with those deduced from experiment.57 An
anharmonic correction factorfanh(E) to the HOCl density of
states may be determined by comparing the anharmonic and
harmonic densities, i.e.,Fanh(E) and Fhar(E). The latter is
determined from the HOCl harmonic vibrational frequencies,
i.e.,νOH ) 3602.2 cm-1, νOCl ) 724.6 cm-1, andνbend) 1238.3
cm-1.50 A plot of this fanh(E) correction factor is given in Figure
2.

To have a continuous expression forfanh(E), the points in
Figure 2 were fit to the following model equation:58

kuni(ω,T) ) ω
Q∫0

∞k(ω,E)F(E) exp(-E/kBT)

k(ω,E) + ω
dE (10)

HO2 f H + O2 (11)

HOCl f OH + Cl (12)

Figure 1. Unimolecular rate constants (s-1) for HOCl f OH + Cl
dissociation: o, quantum dynamical, state-specific rate constants of
Hauschildt et al.;52 (-x-), average of the state-specific rates with 0.5
kcal/mol energy width; (-), SACM vibrationally adiabatic rate
constants; (---), (- - -) and (---) are microcanonical VTST rate
constants withb ) 0.5, 0.8, and 1.0 Å-1, respectively (see text).

Figure 2. Comparison between the anharmonic correction to the HOCl
density of states, i.e.,fanh(E) ) Fanh(E)/Fhar(E), and the fit by eq 13.
Fanh(E) is determined from the quantum calculations of Hauschildt et
al.52

fanh(E) ) exp(bEd)[1 + dbEd

s ] (13)
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wheres ) 3 is the number of vibrational degrees of freedom.
The fitted values areb ) 3.72 × 10-5 and d ) 2.30. Here,
parameterd is unitless, andb has a unit of (kcal/mol)-d. As
shown in Figure 2, the fit to the points is quite good. The
extension of the anharmonic density of states, i.e.,Fanh(E) )
fanh(E)Fhar(E), to energies above the unimolecular threshold is
shown in Figure 3. Here,Fanh(E)∆E, with ∆E ) 0.5 kcal/mol,
is compared with the actual number of resonance states in the
∆E energy interval.52 The latter was obtained by counting the
number of states in Figure 1 within∆E. It should be noted that
Troe59 has proposed an empirical formula for the anharmonic
density of states, which gives excellent fits to the experimental
Fanh(E) for HOCl57 and NO2.60

Overall, the anharmonic-corrected density of states above the
unimolecular threshold is in good agreement with the quantum
dynamical number of resonance states. The difference observed
is that the number of resonance states identified in the quantum
calculations falls somewhat below the number predicted by
extending the anharmonic bound-state density above threshold.
This is the direction in which one would expect any difference
to occur, because it may be difficult to identify all of the broad,
short-lived resonances in the quantum dynamical calculation
and some of them may not be included in Figure 1. At the same
time, the upper limit of the calculated rates in Figure 1 is well
defined. It corresponds to the inverse time of a ballistic particle
with energy E to move across the interaction zone of the
potential energy surface.50 Thus, the small discrepancy between
the quantum results and the model predictions in Figure 3 may
also be attributed to the limitations of the anharmonic density
extrapolations.

III. Microcanonical Rate Constants and RRKM Model

A RRKM model is needed to calculate akuni(ω,T) curve to
compare with that determined from the state-specific uni-
molecular rates. However, before presenting this model, it is
useful to compare the HOClf OH + Cl k(E) curve determined
previously52 from the statistical adiabatic channel model
(SACM)61 with the curve of the average state-specific rates.
Both of these curves are shown in Figure 1 and, except for the
lowest energies, the average state-specific rates are significantly
lower than the SACM rates. These average rates are determined
for an energy interval of 0.5 kcal/mol, and the SACM rates are
determined from the vibrationally adiabatic curves derived52

from the HOClf OH + Cl potential energy surface used in
the quantum dynamical calculation. As discussed in the previous
section, some of the broad resonances, with large rate constants,
may not be included in Figure 1. Including these rates would
increase the quantum average. On the other hand, the fact that
the SACM rate is larger than the average of the state-specific
rates is not unexpected, because the statistical hypothesis is not
fulfilled for HOCl dissociation.

A variational RRKM model,62 similar to that used previ-
ously54-56 was developed for HOClf OH + Cl dissociation.
The model assumes that the OH stretch frequency remains
constant at 3602 cm-1 as the O-Cl bond ruptures. The reaction
coordinate potential is modeled by the Morse function

where De is the classical O-Cl bond dissociation energy.
The values for the parameters in eq 14 areDe ) 58.30 kcal/
mol, re ) 1.689 Å, andâe ) 2.09 Å-1. The attenuation of the
H-O- - -Cl bending frequency, as the O-Cl bond ruptures, is
represented by

where νe ) 1238 cm-1 is the bend frequency at the HOCl
potential energy minimum. Theb term in eq 15 is the only
adjustable parameter in this variational RRKM model for HOCl
dissociation.

The microcanonical variational RRKM rate constants were
calculated using the expression

whereN‡(E) is the minimum in the sum of states along the
O-Cl dissociation reaction path andF(E) is the HOCl anhar-
monic density of states, as described above. RRKMk(E) curves,
determined with theb parameter in eq 15 set to 0.5, 0.8, and
1.0 Å-1, are shown in Figure 1. The SACM curve is in good
agreement with theb ) 0.8 Å-1 curve at low energies and the
b ) 1.0 Å-1 curve at intermediate and high energies. Theb )
0.5 Å-1 curve is in good agreement with the averages of the
state-specific rates. The curves of the H-O- - -Cl bending
frequency versus the H-O- - -Cl distancer, for b ) 0.5, 0.8,
and 1.0 Å-1, are given in Figure 4. Also shown is the plot of

Figure 3. Comparison betweenFanh(E)∆E, ∆E ) 0.5 kcal/mol, and
the number of resonance states in the∆E energy interval.Fanh(E) is
the fit from eq 13, and the latter is obtained by counting the number of
states in Figure 1.E is the energy in excess of the unimolecular
threshold.

Figure 4. H-O- - -Cl bend frequency as a function of the O- - -Cl
distance. (s), 1 r 0 transition frequency from the vibrationally
adiabatic potential energy curves; (‚‚‚‚‚), (- - -), and (-- -) are the curves
from eq 15 withb ) 0.5, 0.8, and 1.0 Å-1, respectively.

V(r) ) De[1 - e-âe(r - re)]2 - De (14)

ν(r) ) νe exp[-b(r - re)] (15)

k(E) )
N‡(E)

hF(E)
(16)
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the 1 r 0 transition frequency for the H-O- - -Cl bend,
determined from the vibrationally adiabatic potential energy
curves for the HOClf OH + Cl analytic potential energy
surface.52

IV. Lindemann -Hinshelwood Thermal Unimolecular
Rate Constantkuni(ω,T)

Both the isolated resonance, eq 9, and RRKM, eq 10, models
are used to calculatekuni(ω,T). To evaluate eq 9, the resonance
rateskn and energiesEn are taken from Figure 1 and the partition
function Q is calculated from the anharmonic energy levels
calculated by Hauschildt et al.52 for HOCl. Equation 10 is
evaluated by using the variational RRKMk(E) discussed in the
previous section fork(ω,E), the anharmonic density of states
Fanh(E) for F(E), and the sameQ as above. It is noteworthy that
the harmonic approximation is excellent for evaluatingQ,
because the harmonic and anharmonicQ differ by less than 1%
at 1000 K.

A. Variational RRKM Model with b ) 1.0 Å-1. Figure 5
gives a comparison of the state-specifickuni(ω,T) curve with
that calculated for the variational RRKM model withb ) 1.0
Å-1. As shown in Figure 1, this variational RRKM model gives
a good representation of the SACMk(E) curve, which is
calculated from the vibrationally adiabatic potential energy
curves for the analytic potential energy surface used to determine
the resonance rates and energies. Thus, Figure 5 also represents
a comparison of thekuni(ω,T) curve of the SACM model with
that for the actual quantum dynamics, with both curves based
on the same potential energy surface.

As shown in Figure 5, the state-specifickuni(ω,T) is a factor
of 2.0-2.4 smaller than the RRKM value at the high-pressure
limit. This is because the high-pressure limiting rate is a
Boltzmann weighting of the energy and state-dependent rate
constants and, as shown in Figure 1, the RRKMk(E) for b )
1.0 Å-1 and the SACMk(E) are significantly larger than the
energy-dependent average of the state-specific rates. At low

pressure, the twokuni(ω,T) curves are nearly identical, as
expected, because in the low pressure limit the rate constant is
proportional to the Boltzmann weighted density of reacting
states, which is nearly the same for the two models.

B. Variational RRKM Model with b ) 0.5 Å-1. A RRKM
model is often constructed to fit the experimental high-pressure
kuni(ω,T) rate constant, and this model is then used to calculate
the completekuni(ω,T) versusω curve for comparison with
experiment. As shown in Figure 1, the decomposition of HOCl
is state-specific, and thekuni(ω,T) curve calculated with the state-
specific model should represent the experimentalkuni(ω,T) curve.
An approach akin to fitting the experiment is to choose a RRKM
model which fits the state-specific high-pressurekuni(ω,T) rates.
The variational RRKM model withb ) 0.5 Å-1 is expected to
give an approximate fit to the state-specific high-pressure
kuni(ω,T), because this RRKM model givesk(E) rate constants
in approximate agreement with the averages of the state-specific
rates (e.g., see Figure 1).

The kuni(ω,T) curves calculated with theb ) 0.5 Å-1

variational RRKM model are compared with the state-specific
kuni(ω,T) curves in Figure 6. The two sets of high-pressure rate
constants are in approximate agreement. However, at intermedi-
ate pressures, the state-specific curve is significantly lower than
the RRKM one. ForT ) 1000 K, where the two sets of curves
are nearly the same at high-pressure, the state-specific curve is
as much as a factor of 2.0 lower at intermediate pressures. If
the curves for 300 and 500 K are shifted so that they agree at
high-pressures, a similar lowering of the state-specifickuni(ω,T)
curve is found for these temperatures. Thus, the effect of the
orders-of-magnitude differences in the state-specific rates shown
in Figure 1 is to give a state-specifickuni(ω,T) curve which is
a factor of 2.0 lower than the standard RRKM one at intermedi-
ate pressure. This is a significant effect and should be observable
when fitting the experimentalkuni(ω,T) curve for HOClf OH
+ Cl dissociation. In the Appendix, it is shown that, if the
RRKM rate constantk(E) equals 〈kn〉, the average of the
state-specific rates for the energy intervalE to E + ∆E, the
RRKM kuni(ω,T) will always be larger than the state-specific
kuni(ω,T).

Figure 5. Plots ofkuni(ω,T) for the isolated resonance state-specific
model (s), eq 9, and the variational RRKM model (- - -), eq 10, with
bend attenuation parameterb ) 1.0 Å-1.

Figure 6. Same as Figure 5, exceptb ) 0.5 Å-1.
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V. Discussion

The calculations reported here and those of previous studies
provide detailed information concerning the relationship between
state specific and thermal unimolecular rate constants for theJ
) 0 dissociation reaction HOClf OH + Cl. The findings of
these studies are reviewed in the following.

Vibrationally adiabatic potential energy curves have been
calculated for the potential energy surface used in the quantum
dynamical calculation of the state-specific rate constants for
HOCl dissociation,52 and microcanonical statistical adiabatic
channel model (SACM) unimolecular rate constants have been
calculated from these curves. High-pressure thermal uni-
molecular rate constantskuni(ω,T), determined from these SACM
k(E) rate constants, are a factor of 2 or more higher than
kuni(ω,T) determined from the state-specific rates. However, it
is difficult to identify all of the broad resonances with large
rate constants in the quantum dynamical calculations and, if
some of these resonances are not included in Figure 1, the actual
state-specifickuni(ω,T) will be larger and may be in better
agreement with the SACMkuni(ω,T). It is of interest that the
SACM k(E) may be fit by a simple variational RRKM
model,54-56 for which the HO- - -Cl bend frequency is attenuated
exponentially as the O- - -Cl bond ruptures. This attenuated bend
frequency is similar to the 1r 0 transition frequency for the
bend determined from the vibrationally adiabatic potential
energy curves.

In contrast to the high-pressure rate constants, in the low-
pressure limit, the state-specific, RRKM, and SACMkuni(ω,T)
agree, because in this limit the rate constant is proportional to
the collision frequency and the Boltzmann weighted density of
reacting states, which is nearly the same for the three models.
A variational RRKM model may be chosen to fit the state-
specific value ofkuni(ω,T) in the high-pressure limit. However,
at intermediate pressures, this model gives values forkuni(ω,T)
which are as much as a factor of 2 larger than the state-specific
values.

A unimolecular model with nonexponential decay, at each
energy, is required to fit the state-specifickuni(ω,T). A RRKM
model with reduced dimensionality (i.e., a model with only a
fraction of the reaction phase space coupled to the dissociation
coordinate),63 but one that retains exponential decay, cannot be
adjusted to fit the state-specifickuni(ω,T) curve. The quantum
dynamics for HOClf OH + Cl dissociation suggests that the
phase space of the HOCl reactant consists of chaotic, quasi-
periodic, and vague tori64,65 trajectories, as has been found for
the model HCCf H + CdC reaction.13,66,67Such a phase space
structure will give rise to nonexponential classical unimolecular
dissociation for a microcanonical ensemble of HOCl initial
states. It is of interest to investigate the classical phase space
structure and classical unimolecular dynamics of HOCl. A study
of the phase space structure for a two-dimensional model of
HOCl has been completed.49

Finally, it should be emphasized that the state-specific rate
constants used in the calculations ofkuni(ω,T) reported here are
for total angular momentumJ ) 0. The reactant density of states
will increase by including resonance states withJ > 0, but this
will not necessarily alter the difference found here between the
RRKM and state-specifickuni(ω,T) curves forJ ) 0. However,
if there is significantly more coupling and less mode-specificity
for the resonance states withJ > 0, this may result in less
fluctuations in the state-specific resonance rates and, as a result,
better agreement between the RRKM and state-specifickuni(ω,T)
curves.2,6 In future work, it will be of much interest to investigate

the effect of total angular momentum on the thermal uni-
molecular rate constant for HOCl dissociation.
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Appendix

It can be shown that the state-specifickuni(ω,E) in eq 8 is
smaller than the RRKM-typekuni(ω,E) given by

when〈kn〉 is the average of the state-specific rate constantskn.
Thus, if 〈kn〉 equals the RRKM rate constantk(E), which may
be the case for many unimolecular dissociations,68,69the RRKM
kuni(ω,E) is larger than the state-specific value.

The problem is to prove that

and, thus

If one setsxi ) ki + ω, the problem reduces to

It is straightforward to show that eq A5 is true forN ) 2, for
which 〈x〉 ) (x1 + x2)/2. ForN ) 2, eq A5 becomes

If both sides of eq A6 are multiplied by 2x1x2(x1 + x2), one has
(x1 + x2)2 g 4x1x2. This can be rearranged to (x1 - x2)2 g 0,
which is true for all positivexi’s.

Suppose eq A5 is true forN ) n, as shown above forN ) 2.
One can then prove the general validity of eq A5, by proving
it is also valid forN ) n + 1. ForN ) n + 1, eq A5 becomes

which after expanding, may be written as

kuni(ω,E) )
ω〈kn〉

〈kn〉 + ω
(A1)

〈k〉

〈k〉 + ω
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1

N
∑
i)1

N ki

ki + ω
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ω

〈k〉 + ω
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1
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∑
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N (1 -
ω

ki + ω) ) 1 -
1
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∑
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N ω
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(A3)

1
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e
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∑
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∑
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x1 + x2
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∑
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n 1
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Because it is assumed that eq A5 holds forN ) n, the first
term is greater than or equal ton2. Hence, eq A8 becomes

Using the fact that (xi - xn+1)2 g 0, one can show

If eq A10 is summed overi ) 1 to n, one has proven that eq
A5 holds for allN. Thus,kuni(ω,E) determined from eq A1 is
larger than that found from eq 8.
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